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A13STRACT

‘1’his study gives strategies for estimating the modified Alhm variance (mvar),

and formulas for cmnputing tllc equivalent dqywcs  of frcwdom  (mlf) of the cs-

tirnators.  A tllird-dif~crcncc  formulation of Irwar leads to a tractable formula

for cdf in the prcscncc of power-law phase noise. The effect of estimation stride

on cdf is talnktcd. First-degree rational-function approximations for cdf arc

derived, and their performances tatmlatcd. A theorem allowing conservative

estimates of cxlf in tile presence of compound I loise processes is given.
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I. INTRoDucfTION

Alhulvariance  (AVAR)  andmodified  Allanvariance  (MVAR)  arestatisticalm  easuresoffrac-

tional frequency instability. They are both used extensively to measure and characterize the

stability performance of clocks, oscillators, and systems for disseminate ing time and frequency

[1][10][11][12]. Let us give brief definitions. The raw data for these measures comprise a se-

quence x. of time residuals, say from a comparison of two clocks or a phase comparison of

two oscillators. We assume here that the samples Xn are evenly spaced in time, with sample

period  TO. Let an averaging ~ime T = mTO be give]i,  where m is an integer. The Allan

variance, denoted by CT;(T), k defined as 1/ (2T2) times the time average or mathematical

expect ation of the squares of second differences, wit 11 step m, cjf the sequence x,,. Modi-

fied Allan variance, denoted by mod u;(T), k defined in the same way, except that the Z.

sequence is replaced by the sequence ftn (m) of moving averages

1 m- 1

E~(711)  = ‘-  ~ Xn-j, (1)
‘)1 j=.O

By virtue of the second difference in their definitions, stable statistical estimates of AVAR

and MVAR can be accumulated in the presence of a class of of phase noise models, the processes

with stationary second increments [10], from which useful fits to the behavior of oscillators,

amplifiers, etc., can be selected. Special cases are powmlaw  models, associated with spectral

densities having the property

S=(j) N const.j~]

as j -+ O, where @ > --5. In the usual nomenclat~ue  of frequency and time, the noises

associated with ~ = O, – 1, – 2, –3, –4 are called white phase (wh ph), flicker phase (fi

ph),  white frequency (wh fr), flicker frequency (fl fr), and random-walk frequency (rw fr),

respective] y. Nonintegral values of P are also allowed; the corresponding noises are called
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‘{fractional”,

A log-log plot of measured O-V(T) or mod ay(~) vs 7, the familial O-T plot,  often indcates

phme noise that can be modeled M a linear combination of uncorrelated power-law compo-

nents, the component associated with ~ being identified by a straight-line section with slope

~ (–3 – P).  The main advantage of MVAR over AVAR is the increased range of ~ over which

this slope relationship holcks:  –5 < ~ < –1 for AVAR, - 5< /3 < 1 for MVAR [3]. In particular,

‘-3/2 ) from flicker phase (a u ~-]).a mod aV(~)  plot can easily distinguish white phase (o cx T

The corresponding asymptotic OV(T) dependencies, 7 “‘ and T - ‘ /];~(aT) for some a, can

barely be distinguished in practice.

It would seem from (1) that the extra averaging operation that gives MVAR its superior

power of discrimination also multiplies the amount of calculation by a factor of 7n. Previous

papers [2] [7], which treat the mechanics of MVAR computation, show how to reduce that

factor to 4/3, excluding an initial operation on the data set. The approach given in [7]

reformulates the definition of M VAR in terms of third differences of the cumulative sum

of the time residuals. Here, after restating this for~nulation,  we apply it to the study of

the confidence of estimators” of MVAR in terms of their equivalent degrees of freedom (edf).

‘lYactable expressions for edf in the presence of power-law noise allow extensive numerical

trials of estimator parameters, especially the estimation period, the amount by which the

estimator sumrnands  are shifted in time. The outcome is a practical guideline for estimator

design. Simple approximations to the edf of these estimators are constructed and tested,

with the aim of providing a convenient package for conlputing  approximate confidence values

for most experimental situations. Finally, we show }LOW to obt sill conservative confidence

values in the presence of phase noise whose spectrum is a sum of pc)wer  laws.
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11. MVAR AND ITS ESTIMATORS

A. Third-Difference Formulation

. .

The definition, calculation, and statistical theory of modified Allan variance are all simplified

by an approach that derives MVAR from the cumulative sum of t}~e time residuals x.. We

begin wit h the standard formulation. Choose an averaging time ~ =: m~o, and form the

time-residual moving averages z,, (m) from (1). Let A,. be the backward difference operator,

defined by A,,,  j. = j. – f.-,,, for any sequence fn. Use the second-difference operator A:

to form the MVAR filter output

zn(m) = A:zn(m)

-—— Zn(7n)  — 2Zn_rn(7~L) +- En. Z,,l(?n)

Ely definition,

(2)

(3)

where ( ) denotes either mathematical expectation E or an infinite time average over n. Note

that, although only the variable ~ appears, mod u; (T) depends on bc)th  T and TO. For brevity,

we shall occasionally suppress the dependence of h(~n) on the parameter m.

The third-difference formulation expresses z.(m) in terms of the sequence Wn defined by

n

7.00 = o, tl)n == x Zj . (4)
j, ]

In terms of v+,, the time-residual averages are given hy

1
zn(7n) = — Am,wn == ;; (w,, - U)n..,n) , ?*> 7n,

1~1

which, combined with (2), gives

(5)
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z= : (Wn - 3w,,_m + 3wn.,m -- ‘W,,. ,,.)

for IL > 31n.

Formula (5) htw several advantages over (2) for usc in (3). The filter taking UJn to %(m)

has only four taps; the filter taking x. to ~(m) has 31n taps. The computation of estimates

of mod afi(~) from third differences of wn is like the computation of estimates of u; (-r) from

second differences of Xn, and the computation of strided estimates is simplified. Finally, it

is easy to construct useful and tractable stochastic models of the w,] sequence. The cost of

these advantages is the computation of w,, from the recursion w,, =, Wn. 1 + z,,.

B. MVAR Estimator with Variable Stride

To estimate MVAR with limited data, the infinite average in (3) is replaced by a finite average

of the .z~ (m). When computing analogous estimates of AVAR by averaging the squares of

A&z~, it is customary to increase n by either 1 (full overlap) or m (-r overlap). The existing

literature on MVAR ([1], for example) usually assumes a step of 1. Here, we allow the step to

vary between these  extremes. Let us establish some terminology. We specify an estimation

period T1 = ml To, where t~e positive integer ml is called the estimation stride, and we

comsider averages over all available values of ~2m+~ml  (m), k ~ O.

Assume that N time residuals z], Z2, . . . , x~ are availaMe.  Then there are N + 1 summed

values wo, wl, wz, . . . . WA,. Let M be the number of samples of z3~+  ~t~ll (Tn)  obtainable from

(5). Then M is the largest integer satisfying 3m + (M – l)ml < N, namely,

~, = _N_- 3?11 +  1111

[
—.

1
1

In]

where [a] denotes the integer part of a. The MVAR estimator to be studied is

(6)

(7)
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C. Continuous-Time Analog

A continuous-time analog of this set up yields  simple and useful approximations. It is conve-

nient to change the definitions, not only of the undel  lying noise processes (see below), but

also of MVAR and V, by changing discrete-time averages to cent inuous-tirne  averages. The

t bird-difference approach works here, as well. I.et x(t) represent time deviation ass a function

of time. Write

T

ii(t;  T) =  :

/

z-(t  – u) d u ,
TO

/

t
z(~; 7-) = A:z(t; ~), w(t)  = z(u) du .

0

Then

and hence

z(t; T) == :A$w(t).

Define the continuous-time analog of mod oj(~) by

(8)

(9)

(identical to Bernier’s  asymptotic MVAR [3]), and the continuous-averaging estimator Vc by

IT

/
v ’  =  j--pj; o z2(t; T)dL (lo)

Note that if x(t) is available for a duration 7:, then we should let 7’ = Y; – 37-, the duration

of availability of z(t;  T). Later, to match properties of Vc to those cjf V, we shall let T = &fTI,

where i14 is given by (6).



III. N OISE MODFLS

The statistical properties of V ciepend on the random ~jrocesses chosen to represent the sam-

pled time residuals z,,. Following Walter’s treatment of discrete sampling [13], we use an

explicit discret~time  power-law model instead  of a sampled continuous-time model for our

main calculations. This has two advantages. First, wc avoid the complications of the inter-

actions among the hardware bandwidth, the sample period, and the averaging time [3] [11].

%ccmd,  the discrete-time model works especially well with the third-difference formulation.

Because the measure of estimator confidence to be examined is invariant to scale factors,

we use the most convenient scaling for spectral densities to reduce the complexity of constant

factors in the generalized autocovariances shown in ‘J’able 1. Fact ors for converting to the

standard scaling used by the frequency and time com~nunity are given below.

The most critical assumption about the models is the absence of linear frequency drift.

We assume that the drift rate either is zero or is known from considerations external to the

immediate data set. In the latter case, we can assume that the drift  has been removed from

the data. In particular, Zn has no long-term quadratic component, wn has no long-term
,

cubic component, and Zr, (7n) has mean zero. This aswrnption  will later be repeated at the

point where it is needed.

A. Discrete-Time Power Laws

Let the two-sided spectral density of the To-sampled  sequence Z. be given by

1
Sal(f) = 12sin(7rj~o)1°  , 1~1 < j~o-X (11)

Then S$(~)  N 127rfTo[p  as f –> O. The process w,, defined by (4) satisfies Al w. = X..

Because the frequency response of the operator Al is (2 sin (7[ f70))2,  we know that Wn is also
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a power-law process, with spectral density

Sj, (J)  = 12sin(7r~m)[p-  2.

,’

This frequency-domain description of Wn has an ecluivalent  time-domain description, the

gcnemlimd  aukxxwarianw  (GACV) sequence ~~ (n), where n runs through all the integers.

This concept, whose definition and theory will not be given here, extends the usual notion of

autocovariance  ( ACV) from stationary processes to processes with stationary dt h increments

[5]. CAGVS of continuous-time and discrete-time processes have been used in studies of Allan

variance and power-law noise simulation [4] [5] [6] [9]. Table 1 gives fcmmulas for I@W (n) for the

values of P needed in t h]s study. The formula for nonintegral  ~ in Table 1 is equivalent to

the one given by Kasdin and Walter [9] for power laws. Because passsage to the limit as P

approaches an integer is not straightforward in general, the formulas for integral ~ are derived

from ACVS of stationary power-law processes by solving the difference equation –6~R(?L; ‘y)

= R(n; -y + 2) repeatedly, where R(n; ~) is the ACV or GACV of a power-law process with

exponent ~, and 6; is the second-order central difference operator with step 1.

Becau..e  ~ > –5, we knqw that x. has stationary second increments, W. has stationary

third increments, and, for each m, q (7n) is stationary. The ordinary ACV sequence

frf(71;  m) = E z~+ ~(77t)Z~  (7n)

can be calculated from R$(n)  by

This formula follows from (5) and the theory of GACVS of prc)cesses  with stationary dth
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increments.

It is appropriate to note here that (3), Table 1, and (12) give a formula for MVAR in the

presence of discret~time  power-law phase noise, namely,

(13)

which, when expanded, is equivalent to a formula clf Walter ([13], eq (75)).

The standard power-law scaling used by the frequency and time community is based on

a one-sided spectral density, S; (J)  N ha j“, of fractional frequency y = dx/dt,  where a

== P +2. To convert l~(n), R$(TL;  m), and mod o; (~) to this scaling, multiply them by the

factor

~ (27r-” T:-”? (14)

B. Continuous-Time Power Laws

Because the continous-time  analog  given above avcids sampling altogether, continuous-time

randorn-proces.. models are appropriate. Let the tw~sided  spectral density of x(~) be given

by

~(f) = [27rfl~  , -co < f < 0 0 , (15)

with no high-frequency cutoff. Then, since dw/d.!  = z, we know that w(t)  is also a power-law

process, with spectral density

SW(j)  = 127rfl~’?  .

For /?> –5, the process w(t)  has stationary third increments. Its GACV function l~,(t) [4] [9]

is also given in Table 1. As with the discrete-time model, the process z(t)  given by (8) is

stationary, with ACV function



that can be calculated by

A formula for mod’ a: (~),  analogous to (13), is

(17)

Substituting l~(t) from Table 1 into (16), we fmd from (17) that modC at (~) is exactly

proportional to ~-3-0, for – 5<0<1. The same result was derived by Bernier [3] from a

frequency-domain integral.

The factor for converting l~,(t), 1~ (t; T), and mod a; (~) to standard frequency and time

scaling is the same as (14), with To set to 1.

IV. E QUIVALENT DEGREES  OF F R E E D O M

By definition, the equivalent  degrees of freedom (edf) of a random variable X is defined by

dfx == =Z
var X

(18)

If X is distributed as a constant multiple of a x; random variable, with v degrees of freedom,

then edf X = v. For example, the sample variance of n independent, identically distributed

Gaussians bass n – 1 degrees of freedom. Even if X does not have such a distribution, edf X

can still serve as a convenient dimen..ionless  measure of the confidence of X as an estimator

of its mean E X. In this study, I take this point of view with regard to V, not having

investigated the nature c~f its distrilmtion. Since V is the sum of squares of corndakd mean-

zero Gaussians, it is reasonable to assume that V is appmxinzately  distributed as const o &ff v.
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In this case, approximate confidence intervals for mod OV(T) can be constructed, as described

for ati(~)  by Howe, All an, and Barnes [8].

A. Discrete Time

Let us compute edf  V. By (7) and (13),

EV= #~2J@(O;  Tli); (19)

that is, V is unbiased for mod u; (~). Also frcnn (7) we have

(20)

To compute the covariances in (20), we assume that %(m) is a stationary Gaussian mean-zem

prc)cess. As indicated earlier, the assumption E %,(m) = O is crucial; in practice, it means

that the effect of linear frequency drift on a time scale of order 7- is negligible. Since any two

jointly Gaussian mean-zero random variables X and Y satisfy cov (X2, Y2) = 2 (EXY)2 ,

(20) becomes
M--1 hf - 1

2  ~ ~ [E? ( ( i  - j )  7?l,;m)]2  <“ar V ‘: i2T2M)2  ~= o j= o (21)

The diagonal i – j = k, for h = 1 – M to 114- 1, contains M – ]k[ identical term... Summing

over these diagonals converts the double sum to a single sum, which, combined with (18) and

(19), gives the main formula for edf  V:

(22)

where

1#(71” 771)
P:(7V Tit) == —Z-J —--0R:(o; m)

Formula (22) is analogous to existing formulas for the edf  of AVAR estimators (see [6] and ref-

erences therein). The main difference is that the ACV of z is computed from sixth differences

of the GACV of w instead of fourth differences of the GACV of x.
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hall from (12) that each value of 1# (n; 7n) needed in (22) is obtained from seven

values of 1~, (n). If no values of 1$ (n) are stored ili advance, it takes 7M evaluations of

l~(n)  to compute (22). Walter’s formula for var V ([1 3], eq.(32))  is a double sum requiring

5(2m  – 1)(2A4  – 1) evaluations of l~(n), In practice,

the values l#W(n), 17~1 ~ N, in advance. This shows

moreover, one can compute and store

the advantage of the third-difference

approach, which derives mod U:(T) from ton instead c]f Z.(m).

A note on numerical computation. The ACV 1&71;  m) tends to zero as n ~ 00, yet is

obtained from differences of }~, (n), which tends to co with n. Clearly, one should use double

precision for evaluating (12). Even so, the computed values of & (7L; m) can deteriorate

for large n, especially for nonintegral  ~, when l&(n) has to be ccjmputed from a ratio of

r functions. I was able to cure this problem by replacing the upper limit M – 1 of the

summation in (22) by K — 1, where K is the smaller of h4 and 10m/ml. (In all actual

cc)rnputations,  ~n/ml  is assumed to be an integer. )

B. Continuous Time

The computation of edf V’ follows the same pattern. By (10),

and, with the assumption that z(L; ~), as a function of t, is a staticmary  Gausian  mean-zero

process,

A change of variables

2
var VC == //

T ~T [It:(i - u; T)]2 d du.
(2~27’)2 O

converts the doulde  integral to

J‘2 7’(Y -t) (l~(t;7))2  f4
o
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ill which we shall make the further change of variable f = ~z. From Table 1 and (16), it can

be verified that

~(TZ; T) ,= l~(x; l)
R:(O;77 R;(o; IJ “

(q’his is a scaling property of ccmtinuous-time  power-law noise.) Thus, defining

}~(z; 1)
p; (z) = —-—

R;(o; 1) ‘

we obtain

where p = T/r.

(23)

v. E FFECT OF ESTIMATiO~ PERIOD

Formula (22) was  used to generate tables of edf V for combinations of N, m, and ml. Recall

that N is the number of time residuals in the data set, IIL = T/TO, where  T is the averaf@~g

time, and ml = ~1 /~o, the estimation stride, where 71 is the estimation period. From here

on, we also aswlme  the divisibility  condition, which says that the estimation period divides
t

evenly into the averaging time, that is,

T ‘nt—=.—=. r,
T] ?11]

where r is an integer. Thu., the estimation stride ml is restricted to divisors of m. This con-

dition allows V and edf V to be calculated from the subsampled arrays ~j,t,l and I@W (jml ),

respectively. For each (N, 7TL, m]) combination, the IIumber  M of estimation summands to

be used in” (22) is calculated by (6), and the parameter p is defined by

M ~4TI
p=<-=--;.

13
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A selection of edf values is shown in Table 2 for integral values of the power-law exponent

~. Values were also computed for half-integral values of /3, but are not shown; as expected,

they interpolate the given values, For now, ignore the “?ZO” rows, and observe how edf depends

On r (or nll ) for N = 1024, m fixed. For each 6, and for t?l ? 4 j it is clear that anY value

of r between 4 and 7~L gives a value of edf that is nearly maximal fclr that m and ~. As the

listings for m = 2 and 3 show, we should take r = m (i.e., Tm = 1 ) in case m <4. Here is

an empirical result.

Assume an avcmging  lime T at most l/4th the dumtion of the time-deviation word.  For

each discrete-time power law between white phme and mndom-walk  Jmquency,  any estimation

period TI bctwccn TO and max (T O, T/4) that divides everdy into T gives an MVAR estimator

V W11OSC  edf is within 8 pcmcnt  of ihe moximo,l  value  for r.

Table 2 shows that the variation of edf V with r is greatest for white phase (/?= O). Also,

we see that p by itself is a rough estimate of edf V, especially for r in the recommended range

tin (4, ni) S r S Tn.

The choice of estimation period T1 may depend on a tradeoff between convenience and

*
computational effort. For simplicity, one can always choose 7-1 = 70. If the data set is large,

one can choose the largest accept able value, T] = T/4, to minimize the number M of terms

needed to calculate V from (7).

VI.  LO W E R  B OUNDS FOR M V A R  EDF

The aim of this section is to uncover simple approximation fonmdas  for edf V that can be

used in practice in place of the exact summation (22). There a! e two rigorous lower-bound

formulas that can serve this purpose.
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A. Discrete Time

Up to now, we have concentrated on a time-domain formulation cjf edf  V. The following

result is proved by a frequency-domain argument, which is not given here.

Tkxmxn 1 Let the time residuab x. be a discmte-iime  power-la.w process (sample period

7.) with spectrum (11), whew -- 9/2 < ~ s O. Assume that Zn has stationary Gaussian mean-

zeru  second increments. Let m = m] r, where IIL1 and r are positive integers. Using (4), (5),

(7), and any positive integer M, form the MVAR estifnator  V unth avemging  time r = mro

and estimation period TI = In] 7-0. Then

(25)

whcrr

Im f 2 sin6 (7rx)
1  =  – — - — - —  — CLr,

O  [7nsin (7rx/7n)]2--0

J r/2 sin12 (7rx)
J =  –—--——---4-  h.

o [r sin (7rx/r)]

In other words, we have a bound of form edf V ~ op, where p = &f/r as above, Tables of

,
a vs O, Tn, and r can be generated by numerical integration.

Il. Continuous Time

It is much easier to derive a useful lower bound for edf V’. Let p z 2. From (23) we have

This gives a bound of form

(26)

P
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The constants a. and al, which depend only on R, ale computeci by numerical integration.

To use this expression as an approximation to edf V, we again let p== i’14/r.

C. An edf Approximation Strategy

The right sides of (25) and (26) can be regarded as candidate approximations for edf  V. To

assess their quality and to choose between them, tables were generated for a selection of N,

7n, and r. The following empirical strategy and error statement emerged.

Assume discrcle-time power-law phase noise with e:rponcni.  bctwccn  white phase and mndom-

walk fmqucncy,  at least 16 tirne-n%dual  points, an avemging  time  T ai! most 1/5th the du-

mtion  of the measurement, and an estimation period TI between TO and max (T O, T/4)  that

divides evenly into T . In our n o t a t i o n ,  O 2 ~ > –4, N 2 16, 7r1 5 N/5, and In = rIm,

u1hc7v r is an i7ukgcr between min(m,  4) and In.

For  In = 1 or 2, the discrete-t ime 10WCT.  bound (25) is used as an appnwimation  for

edf  V. In all olhcr cacs, the continuous-time lower bound (26) is used. l’he relative emwr

oj this stmtcgy is observed to be at most +11.1 pcrcod.

‘lb implement this appwtimation  in pmcticc,  use the formula

edf v ~ _5!p— (27)
1-Q’

P

whc7e p = M/r, M is obtained jmm (6), and the cocficients  ao, al, as junctions of m and

(i’, am drown jmrn lhblc 5’.

To balance the errors, it was found expedient to reduce the continuou.s-tirne  edf approxi-

mation, for white phase only, by 5 percent. Table 3 includes this adjustment. Each ‘%o” row

in Tal.de 2 shows the percentage errors of (27) for the row above. Table 3 represents the full

range of observed errom
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VII.  C OMPOUND N OISE S P E C T R A

The foregoing results and methods assume a discrete-time phase noise spectrum proportional

to (11) for some fixed exponent ~. If that were indeed the case, our statistical efforts ought

to be directed toward estimating the two-parameter set consisting of O and the constant of

proportionality. Instead, as usual, we find ourselves using parametric tools to evaluate the

confidence of a nonpararnetric statistic. The value of edf V depends on P. What can we do

in the presence of a polynomial phase noise model

S.(f) = ~gp lsin(2nj70)lP,
D

a finite sum of power-law spectra? Some help is given by

(28)

the following theorem, which,

although weak and perhaps obvious, is better than no knowledge at all about the situation.

Tlleorcm 2 I,ct  lhc phase  noise be a jinite sum of iT1dependcnt component noises with sta-

tionary G’auwian  mean-mm scc..nd  increments. FornL  an MVAR cslimalor  V Jrom  the given

phase noise, and comxponding estimators Vk jrom  the components. ~’hen

, edf V > In/nedf Vk.

In other words, we never do worse than the worst conlponent.

TO apply this theorem to the situation (28), ass~”le that the co]npcment  ~ values are all

in some subinterval of [–4, O] (the whole range, perhaps). Use (27) and Table 3 to compute

edf  VO for each tabulated P in the subinterval,  and take the smallest value as a wn.seroative

estimate of edf  V. For example, if one believes that the noise has components between white

phase and flicker phase, perhaps from prior knowledge, perhaps as evidenced by a log-log

plot of mod u vs T with slopes between -3/2 and -1, then one can minimize (27) over the first

three rows of Table 3.
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The proof of Theorem 2, although not difficult, is not given here. It can be generalized to

AVAR estimators and other situations involving averages of the square of a stationary Gaussian

mean-zero process. Its usefulness for MVAR is enhanced by the relatively weak dependence

of estimator edf on ~, as can be seen in Table 2. AJl inspection of similar tables for fully

overlapped AVAR estimators [6][12] shows a much sharper dependence on P, especially for

large ~/~o. For MVAR , minimizing over a set. of ~ causes a smaller loss of accuracy in the

computation of estimator edf,  given imperfect knowledge of the phase spectrum.

VIII. CONCLUSIONS

Although the overall problem of estimating modified Allan variance MVAR may appear to

be more djfflcult than the same problem for conventional Allan variance AVAR , theoretical

and numerical results calculated here from the third-clifference  approach show that in some

ways the sit uation is actually reversed. An attractive expression for the equivalent degrees of

freedom (edf)  of MVAR estimatcms  in the presence of power-law phase noise was derived, and

simple approximations constructed. Numerical computations of edf yielded a rationale for

choosing the est i mat ion period or stride: we found empirically that the use of an estimation

period up to one-fourth the averaging time does not appreciably degrade the confidence of the

estimator below that of the fully overlapped estimator. Often, in fact, there is no degradation.

The computations also revealed that the extra filteri~lg  inherent in MVAR causes the edf of

an estimator to be less sensitive to the power-law exponent than the edf of a typical AVAR

estimator. . Consequent y, MVAR error bars can be more robust against spectrum uncertainties

than AVAR error bars.

The most important limitation on these results, especially for long tests of oscillators, is

that linear frequency drift must be negligible. If a d] ift rate is known from considerations

18



external to the immediate data set, then one can relnove  it from the phase data, and we

are back to the case of zero drift. For AVAR,  it is known that estimation of drift from

the data thermelves, and removal therefrom, causes negative AVAR estimator biases that

worsen as averaging time ~ increases. The use of three-point [14] [1 ~] or four-point [4] drift

estimators, which extract a quadratic component of the t im~residual  sequence Xn, simplifies

calculations of the mean and variance of estimators of AVAR with drift removed. I have no

doubt that similar calculations for MVAR estimators can be made cm the basis of four-point

drift estimators that extract a cubic component of the sequence w,, of cumulative sums of

x~ .

——.—.

The work described in this study was performed by the Jet Propulsion Laboratory, Cal-

ifornia Institute of Technology, under a contract with the National Aeronautics and Space

Administration.
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61.25
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5.031
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*
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beta
0.0 -1.0 -2.0 -3.0 -4.0

-----. ------ ----- ------ ----- -----
525.9
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477.0
-0.1

174.6
373.9
+11.1
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1022.
+0.0 %
432.3
441.4
-0.1 %

271.0
274.0
-5.0 %

47.55
47.60
47.43
-0.2 %

47.33
-0.2 %

47.29
-0.2 %

4.766
4.535
4.367
+0.2 %

4.277
+0.0 %
4.231
+0.0 %

4.207
+0.0 %
4.196
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4.190
+0.0 %

14.00
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5.061
-5.9 %

2.508
-3.5 %
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Errors for MVAR Estimator edf
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m
-------- ------- ------- . -------

noise 1 2 >2

type beta aO a 1 aO al aO al
------ ----- ----- ------ -----_ ------ ______ _______ ----- ---
wh Ph 0.0 .51429 0 .93506 0 1.2245 .58929

-0.5 .54277 . 95407 1..0739 .59605
fl ph -1.0 .57640 .97339 3..0030 .60163

-1.5 .61688 .99246 . 97732 .59769
wh fr -2.0 66667 1.0101 . 96774 .57124

-2.5 :72948 1.0237 . 96102 .50974
fl fr -3.0 .81057 1.0266 . 94663 .41643

-3.5 .91389 .99981 .90604 .34276
rw fr -4.0 1.0000 . 86580 . 76791 .411.15

Table 3: Coefficients  for Approximating MVAR Estimator edf


